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Symmetry-broken states on networks of coupled oscillators
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When identical oscillators are coupled together in a network, dynamical steady states are often assumed
to reflect network symmetries. Here, we show that alternative persistent states may also exist that break the
symmetries of the underlying coupling network. We further show that these symmetry-broken coexistent states
are analogous to those dubbed “chimera states,” which can occur when identical oscillators are coupled to one
another in identical ways.
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When identical oscillators are coupled to one another in
identical ways, it is unsurprising that synchronization may
occur. However, another apparently stable symmetry-broken
state of partial synchrony may also occur; this has come to be
known as a “chimera state” [1–3]. In this paper we show that
chimera states are robust to significant changes in the network
structure, and that the resulting irregular networks can retain
apparently stable states that bear the same symmetry-breaking
hallmark as the chimera state from the original network.

Figure 1 shows two different equilibria, both apparently sta-
ble, on a single irregular network consisting of 160 oscillators.
The right panels show a state that is roughly spatially invariant,
and the left panels a symmetry-broken state analogous to the
chimera state. An important question for real-world networks
is whether the existence of nonsynchronous steady states can
be predicted from the network structure [4–13]. This may
have implications for systems ranging from generators on an
electrical power grid [14–17] to cardiac pacemaker cells in the
heart [18–21] to the neurons in the suprachiasmiatic nucleus
of the brain responsible for circadian rhythms [22–26].

Generalizing chimera states. We wish to generalize the
symmetry-breaking phenomenon responsible for the existence
of chimera states to randomly connected oscillator networks.
We accomplish this algorithmically by making incremental
perturbations to a symmetric network on which chimera states
have been observed and explained in the continuum limit: the
one-dimensional ring of oscillators [2,27,28].

By randomly rewiring links while keeping the total number
constant, we can gradually tune the network from spatially
structured (in an ensemble average sense) to an Erdős-Rényi
(ER) random network. We perform this rewiring in an
“adiabatic” sense, allowing the dynamical system to relax to
equilibrium after each change to the network structure.

We find that a bistable coexistence of a synchronous state
and a chimera state persists for a significant degree of network
rewiring. Furthermore, this persistence can be explained ana-
lytically by examining both the dynamical system and the ex-
pected network structure in the thermodynamic N → ∞ limit.

Numerical exploration. We consider N coupled oscillators
assigned uniformly spaced positions xi ∈ (−π,π ], i = 1 . . . N
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along a one-dimensional ring with periodic boundary con-
ditions. We numerically implement the following governing
equation for the system,

∂φi

∂t
= ω − 1

N

N∑
j=1

cij sin[φi(t) − φj (t) + α], (1)

where ω is the (identical) natural frequency of each oscillator,
φi(t) is the phase of the oscillator at position xi at time t , α

is a “phase lag” parameter, and cij is the ij th element of the
N × N coupling matrix C. We first consider the case of binary

(a) (b)
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FIG. 1. Two different stable states on a network. Upper left: Phase
pattern for a partially synchronized state observed on a network.
Upper right: Phase pattern for a fully synchronized state observed
on the same network. In both panels the node size indicates degree
and color indicates phase φ (white-red-blue as the phase varies from
−π to π ). Lower panels: Phase patterns from upper panels showing
phase vs node spatial position xi (the node spatial position is given
by the node angle in the upper panels; the radial position has no
significance). For this network, N = 160 oscillators and α = 1.34,
with dynamics according to Eq. (1).
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coupling where cij = 1 if there is an undirected link between
oscillators i and j , and cij = 0 otherwise.

In the thermodynamic limit N → ∞, the phase becomes
a continuous function of both space and time φ(x,t) and the
adjacency matrix C must be replaced by a continuous coupling
kernel G(x,x ′). Such a system was studied in Ref. [2] with

G(x,x ′) = 1

2π
[1 + A cos(|x − x ′|)], (2)

where parameter A tunes the locality of the coupling. It was
found that chimera states could stably exist for certain ranges
of the parameters α and A.

For the purpose of numerical simulation, finite-sized net-
works are required. We generate a random adjacency matrix
C where, motivated by Eq. (2), the probability of connection
between nodes i and j is given by

pij = λ

2π
[1 + A cos(|xi − xj |)]. (3)

Here, λ is a parameter that can be used to tune the link
density (average degree) of the network, and 0 � A � 1, and
0 � λ � 2π/(1 + A) is assumed in order to keep probabilities
in allowed ranges. See the upper left panel of Fig. 2 for
an example. We denote the total number of links in a
given network realization Mtot, with an expected value
approximately λN2/(4π ).

After generating our initial structured random network
according to Eq. (3), we use a variant of the ER random
graph model [29,30] to generate a “target” network with an
identical number of nodes and links (see the upper right
panel of Fig. 2). We refer to the total number of links that
differ between the initial network and the target network—the
maximum number of links that can be rewired—as Mmax. We
then rewire our initial network in a step-by-step fashion: We
randomly choose a link that exists in the initial network but
not in the target network, delete it and replace it with one that
exists in the target network but not in the initial network, then
let the dynamical system equilibrate. Repeating this process
gradually transforms the initial network into the target ER
network while minimally disturbing the dynamical steady
state.

To characterize the dynamics of the system as we proceed
with this rewiring experiment, we introduce the global order
parameter

R =
∣∣∣∣∣∣

1

N

N∑
j=1

eiφj

∣∣∣∣∣∣ (4)

and track how it changes as the system is rewired in the
pseudostatic fashion described above.

For sufficiently large N , the initial network supports both
chimera and synchronous states, both of which appear to be
numerically stable.1 We select initial conditions (ICs) from
both basins of attraction for the same initial network and (in

1Omel’chenko [28] demonstrated that chimera states in systems
of this type are extremely long-lived transients, but for N � 27 the
expected lifetimes are much longer than the duration of our numerical
simulation.

FIG. 2. Adjacency matrices. The adjacency matrix for the initial
network (left top panel), a network with M = 16 320 links rewired
(middle top panel), and the Erdős-Rényi random target network with
Mmax = 32 639 links rewired (right top panel, Mtot = 65 383). The
bottom panels display the same three networks but with a different
node enumeration, emphasizing the difficulty in recognizing the
spatial network structure without a priori knowledge of its existence.
White indicates the presence of a link, and black indicates the
absence of a link. Here, N = 512, λ = π , A = 1, and self-coupling
is excluded.

separate experiments) track how those states evolve as the
rewiring proceeds (see Appendix A for details on the numerical
approach).

Figure 3 displays the results of an ensemble of these
experiments. For initial conditions belonging to the sync
basin of attraction, rewiring does not appreciably change
the state of the system: The system retains a high order
parameter R ≈ 1 (deviations are due to finite-size effects). For
initial conditions belonging to the chimera basin of attraction,
however, something more interesting occurs. Initially the order
parameter R has an intermediate value between zero and
one, indicating partial synchrony, as expected. As the number
of rewired links M increases, the order parameter slowly

FIG. 3. Results of rewiring experiment. Blue points: Numerical
results from 20 rewiring experiments on binary networks. Red points:
Averaged results from an ensemble of 50 numerical experiments
on finite-weighted networks. Black lines: Theoretical chimera states
from the model in Ref. [2] for the N → ∞ limit. The solid line
indicates a stable branch, and the dashed line indicates an unstable
branch. In all experiments, N = 512, A = 1, λ = π , and α = 1.34.
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increases until it appears to suddenly jump up to R ≈ 1 at
some critical value Mcrit.

Connecting to theory. In Ref. [2], a self-consistency
approach is used to find solutions to the continuum version
of Eq. (1) with coupling kernel (2). Searching for a complex
order parameter solution of the form R(x)ei�(x) = c + a cos x,

the authors come up with two complex equations for four
real unknowns c, Re(a), Im(a), and 	 (the mean frequency
of the synchronized oscillators). The spatially averaged order
parameter 1

2π

∫ π

−π
R(x)dx = c is the equivalent of the global

order parameter (4) that we track in our experiments.
Those two complex equations,

c = ie−iα

〈
	 − (	2 − c2 − 2 Re(a)c cos x − |a|2 cos2 x)

1
2

c + a∗ cos x

〉
,

(5)

a = iAe−iα

〈
	 − (	2 − c2 − 2 Re(a)c cos x − |a|2 cos2 x)

1
2

c + a∗ cos x
cos x

〉
,

can be solved numerically for c as a function of A to obtain
theoretical predictions from the continuum limit. This is shown
as the black line in Fig. 3, with the solid line indicating a
stable branch of chimera-state solutions and the dashed line
indicating an unstable branch of chimera-state solutions. The
fully synchronous state R = 1 (not drawn) is also a theoretical
solution of the continuum model.

To compare predictions of the continuum theory with results
from our simulations on rewired networks, we look for a
relationship between the number of links rewired M and the
coupling locality A. As M → Mmax ≈ Mtot/2, the network
becomes completely disordered, i.e., the probability of a link
between any pair of nodes becomes independent of their spatial
position. This is equivalent to the limit where A → 0, when
coupling kernel (2) represents global coupling with no spatial
structure. Additionally, the limit M → 0 represents maximal
spatial order in the random network, comparable to A → 1 in
Eq. (2).

Figure 4’s left panel shows a fit of the cosine kernel form
(2) to data from a sample rewired network with fixed M .
The fraction of links connecting to a node is plotted versus
spatial distance from that node, averaged over all nodes;
Eq. (2) with best-fit parameter A is overlaid. The right panel
shows the resulting relationship between A and M , plotting

FIG. 4. Converting between network and continuum models. Left
panel: Red dots indicate the fraction of links at distance d from
a given node, averaged over all nodes, for a network with M =
16 000 links rewired. The blue line shows the best-fit cosine kernel
coupling function 1

2 [1 + A cos(x)]. Right panel: The least-squares
best-fit “equivalent A” vs the number of rewired links M in ten
binary network rewiring experiments. Note that error bars indicating
± one standard deviation (std. dev.), if included, would not be visible
(std. dev.∼2 × 10−3). Here, N = 512, α = 1.34, λ = π .

the least-squares best-fit “equivalent” A for each value of the
rewiring number M (see Appendix B for theoretical reasons to
expect linearity between “equivalent A” and M in this rewiring
experiment; however, the numerical approach described here
to find “equivalent A” should work for general coupling
matrices).

When this relationship is used to connect the A and
M scales in Fig. 3, good agreement is seen between the
continuum theory and our finite network experiments. This
strongly suggests that the chimera-state phenomenon is indeed
responsible for the partially synchronized steady state visible
in Fig. 1 and those indicated by the blue dots in Fig. 3.

Weighted network. We conducted a second set of numerical
experiments, this time not restricted to binary networks but
instead using all-to-all coupled networks with weighted links.
Link weights were assigned according to Eq. (3) with pij

interpreted as deterministic values, not probabilities.2

This experiment can be thought of as the closest numerical
implementation of the continuum model when restricted to
finite N . A detailed discussion of the connections between
finite-size and continuum models is beyond the scope of this
paper, but we refer the reader to the effective mean-field
approach used in Ref. [31]. Unsurprisingly, our experiment
resulted in a good match to theoretical predictions: See Fig. 5
(data also displayed via the red dots in Fig. 3) and Fig. 6.

The experiments with all-to-all weighted networks served
a similar function to those on binary irregular networks: They
let us examine whether the idea of a partially synchronized
chimera state extends to the case of finite N , though they did
not allow us to explore the effects of irregularity and symmetry
breaking. Nevertheless, because of the greater ease with which
all-to-all weighted networks can be simulated, we were able to
do more extensive tests of the full parameter space of existence
of chimera states, as shown in Fig. 6.

Discussion. In a sense, it is unsurprising that we found
good agreement between continuum theory and experiment
for both weighted and binary finite networks: In both cases,
we have constructed discrete approximations of the continuum
coupling kernel examined in Ref. [2]. Our experiments might
even be thought of as examining a dynamical bifurcation

2Note that this may be referred to as a “mean-field” representation
for the ensemble of networks for which pij represents a probability.
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FIG. 5. Theory vs numerical experiment on a weighted network.
Blue dots: Results from an ensemble of 50 numerical experiments on
the same all-to-all weighted network with different initial conditions.
For each IC, A was numerically continued from 1 down to 0.8. Red
dots: Ensemble average order parameter value for each A value. Black
curve: Theory from the continuum limit. Solid line, stable; dashed
line, unstable. Here, N = 512, α = 1.34, λ = π .

onset brought about by a slow variation of the parameter A,
implemented via rewiring.

In another sense, however, it is quite surprising that these
persistent partially synchronized states may exist on finite
networks, where the symmetry of the state differs from the
symmetry of the network (or, more exactly, the symmetry
of the expected value of the network structure). Substantial
recent research effort has gone into computing network
symmetries and network motifs, with the (sometimes unstated)
underlying assumption that these network properties will have
implications for dynamics and equilibria on the network.
It may be computationally impractical to find all possible
symmetry groups for subsets of a large finite network, and our
numerical experiments show that employing intuition drawn
from the symmetry of the average connectivity will miss
something.

FIG. 6. Region of existence of the chimera state. Color indicates
order parameter (4) in an all-to-all weighted network of coupled
oscillators initialized in a chimera state. The black line displays the
theoretical boundary where the chimera state ceases to exist in the
continuum model. Here, N = 512, λ = π . Numerical continuation
was used and proceeded from A = 1 down to A = 0 for each fixed α:
See Appendix A for details on how initial conditions were generated
for each α.

Imagine our first numerical experiment being conducted in
reverse, with structure gradually imposed on a random initial
matrix. At some point, though the spatially homogenous state
remains stable, a new apparently stable heterogeneous state
is born “out of the clear blue sky,” through what would be
a saddle-node bifurcation of chimera states in the continuum
theory. It is unlikely that even the existence of this state would
be noticed in simulations of such a system, where nothing in
the symmetry suggests it. If this occurred in an engineered
system such as the U.S. power grid, where global synchrony
of generators is crucial, accidental entry into the partially
synchronized state could be catastrophic.

In our numerical simulations, we found that N needed to
be fairly large (N � 500) to prevent stochastic alternation
between the fully and partially synchronized states. We
also found that the network needed to be fairly dense
(λ � 1) for both states to coexist. This suggests that “sur-
prise” coexistence—coexistence of symmetric and unintuitive
symmetry-breaking persistent states—may only occur in
larger and denser networks.

Conclusions. A major open question in the study of complex
networks is as follows: Given a structured network, what stable
dynamical states may exist? In this paper we have shown that
counterintuitive states analogous to chimera states may coexist
with intuitive spatially homogeneous states. It is difficult to
anticipate when to expect these, especially if the node layout
in physical space is not known or meaningful (e.g., see the
lower panels of Fig. 2).

It remains unknown if this chimera-state analog is the
only symmetry-breaking persistent state on the networks
we analyze, or whether others might remain hidden in the
extremely-high-dimensional phase space of a large network.
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APPENDIX A: NUMERICAL NOTES

We find initial conditions (ICs) for the chimera state in
the following way. Setting α = 1.4, we generate an IC by
drawing uniform random phases φi ∈ (−π,π ]. We evolve
the dynamical system forward in time using an adaptive
fourth-fifth order Runge-Kutta method as implemented in
the commercial Matlab software (version R2014a), and be-
cause the basin of attraction of the synchronous state is very
small with this α value, the system typically spontaneously
reaches the chimera state.

After equilibration in the chimera state, we use numerical
continuation to gradually change α to the desired value (e.g.,
1.34 as in many of our figures) pseudostatically (i.e., we
evolve the dynamical system to equilibrium after each small
step in α). In the case of the binary network, the resulting
distribution of φ values serves as the initial condition for each
network realization in an ensemble. In the case of the all-to-all
weighted network, differing ICs are generated by integrating
the dynamical for a large random time interval while holding
α constant at the desired value.
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APPENDIX B: REWIRING AS SUPERPOSITION

The rewiring process discussed in the paper can be thought
of as linear superposition of two objects: (1) the spatially
structured (initial) network described by an adjacency matrix
with link probability according to Eq. (3), and (2) the
Erdős-Rényi random (target) network where link probability
is independent of spatial position. In the continuum limit, the
adjacency matrix for the initial network is replaced by the
coupling kernel given in Eq. (2), and the adjacency matrix for
the target network becomes independent of spatial position so
that the effective coupling kernel is G(x,x ′) = 1/2π .

When the link rewiring experiment proceeds as described
in the text, a new coupling matrix C is created at each step,
combining some links from the initial network with others
from the target network. In an ensemble average sense, this is
equivalent to a weighted sampling of links from the initial
matrix I and target matrix T. In expected value C is just
the weighted mean C = (1 − w)I + wT, where w ∈ [0,1] is a
weight equivalent to the relative amount of rewiring M/Mmax.

The same idea applies rigorously in the continuum limit,
where rewiring is equivalent to linear superposition of contin-
uous coupling kernels. Thus

G(x,x ′) = (1 − w)

{
1

2π
[1 + A cos(|x − x ′|)]

}
+ w

(
1

2π

)

= 1

2π
[1 + A′ cos(|x − x ′|)],

where A′ = A(1 − w) is the “equivalent A” resulting from
the superposition. This linear relationship between “equivalent

A” and rewiring w = M/Mmax is the reason for the observed
linearity in the right panel of Fig. 4.

Using different initial and target matrices (or, in the
continuum limit, coupling kernels) would yield a different
superposition that may or may not be as easily parametrized.

APPENDIX C: WHY A CHIMERA STATE

We refer to the partially synchronized state shown in
the lower left panel of Fig. 1—the focus of this paper—as
analogous to a “chimera state.” One might ask how it differs
from the state shown in the lower right panel of Fig. 1, which
also includes some asynchronous oscillators. In particular, if
relabeling of the node spatial position is allowed, can the two
states be viewed as interchangeable?

The answer is no: The two states are intrinsically different.
The phenomenon that we find counterintuitive is that identical
oscillators on a network can enter a persistent partially syn-
chronized state which does not reflect the network symmetry
(and as far as we are aware, the chimera state is the only
persistent partially synchronized state observed for networks
of identically coupled identical phase oscillators in the N →
∞ limit).

If the system is not in the “chimera-state” analog, the
simulation of Eq. (1) with large N should always produce
something like the lower right panel of Fig. 1, where the
phase and average frequency distributions do not agree with
the theory from Ref. [2]. Additionally, the set of oscillators
that are “drifting” should reflect particular symmetries of the
coupling network, rather than resulting from the underlying
symmetry breaking of the chimera state.
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